49 research outputs found

    Probabilistic error estimation for non-intrusive reduced models learned from data of systems governed by linear parabolic partial differential equations

    Full text link
    This work derives a residual-based a posteriori error estimator for reduced models learned with non-intrusive model reduction from data of high-dimensional systems governed by linear parabolic partial differential equations with control inputs. It is shown that quantities that are necessary for the error estimator can be either obtained exactly as the solutions of least-squares problems in a non-intrusive way from data such as initial conditions, control inputs, and high-dimensional solution trajectories or bounded in a probabilistic sense. The computational procedure follows an offline/online decomposition. In the offline (training) phase, the high-dimensional system is judiciously solved in a black-box fashion to generate data and to set up the error estimator. In the online phase, the estimator is used to bound the error of the reduced-model predictions for new initial conditions and new control inputs without recourse to the high-dimensional system. Numerical results demonstrate the workflow of the proposed approach from data to reduced models to certified predictions

    Dynamic data-driven model reduction: adapting reduced models from incomplete data

    Get PDF
    This work presents a data-driven online adaptive model reduction approach for systems that undergo dynamic changes. Classical model reduction constructs a reduced model of a large-scale system in an offline phase and then keeps the reduced model unchanged during the evaluations in an online phase; however, if the system changes online, the reduced model may fail to predict the behavior of the changed system. Rebuilding the reduced model from scratch is often too expensive in time-critical and real-time environments. We introduce a dynamic data-driven adaptation approach that adapts the reduced model from incomplete sensor data obtained from the system during the online computations. The updates to the reduced models are derived directly from the incomplete data, without recourse to the full model. Our adaptivity approach approximates the missing values in the incomplete sensor data with gappy proper orthogonal decomposition. These approximate data are then used to derive low-rank updates to the reduced basis and the reduced operators. In our numerical examples, incomplete data with 30–40 % known values are sufficient to recover the reduced model that would be obtained via rebuilding from scratch.United States. Air Force Office of Scientific Research (AFOSR MURI on multi-information sources of multi-physics systems, Award Number FA9550-15-1-0038)United States. Dept. of Energy (Applied Mathematics Program, Award DE-FG02 08ER2585)United States. Dept. of Energy (Applied Mathematics Program, Award DE-SC0009297

    Context-aware controller inference for stabilizing dynamical systems from scarce data

    Full text link
    This work introduces a data-driven control approach for stabilizing high-dimensional dynamical systems from scarce data. The proposed context-aware controller inference approach is based on the observation that controllers need to act locally only on the unstable dynamics to stabilize systems. This means it is sufficient to learn the unstable dynamics alone, which are typically confined to much lower dimensional spaces than the high-dimensional state spaces of all system dynamics and thus few data samples are sufficient to identify them. Numerical experiments demonstrate that context-aware controller inference learns stabilizing controllers from orders of magnitude fewer data samples than traditional data-driven control techniques and variants of reinforcement learning. The experiments further show that the low data requirements of context-aware controller inference are especially beneficial in data-scarce engineering problems with complex physics, for which learning complete system dynamics is often intractable in terms of data and training costs.Comment: 26 pages, 10 figure

    Feedback Control for Systems with Uncertain Parameters Using Online-Adaptive Reduced Models

    Get PDF
    We consider control and stabilization for large-scale dynamical systems with uncertain, time-varying parameters. The time-critical task of controlling a dynamical system poses major challenges: using large-scale models is prohibitive, and accurately inferring parameters can be expensive, too. We address both problems by proposing an offine-online strategy for controlling systems with time- varying parameters. During the offine phase, we use a high-fidelity model to compute a library of optimal feedback controller gains over a sampled set of parameter values. Then, during the online phase, in which the uncertain parameter changes over time, we learn a reduced-order model from system data. The learned reduced-order model is employed within an optimization routine to update the feedback control throughout the online phase. Since the system data naturally reects the uncertain parameter, the data-driven updating of the controller gains is achieved without an explicit parameter estimation step. We consider two numerical test problems in the form of partial differential equations: a convection-diffusion system, and a model for ow through a porous medium. We demonstrate on those models that the proposed method successfully stabilizes the system model in the presence of process noise.DARPA EQUiPS program (award number UTA15-001067)United States. Department of Energy. Office of Advanced Scientific Computing Research (grant DE-FG02-08ER2585)United States. Department of Energy. Office of Advanced Scientific Computing Research (grant DE-SC000929
    corecore